Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast

نویسندگان

  • Grzegorz Ira
  • Anna Malkova
  • Giordano Liberi
  • Marco Foiani
  • James E. Haber
چکیده

Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied by a crossover appear 30 min before conversions accompanied by exchange, indicating that there are two different repair mechanisms in mitotic cells. Crossovers are rare (5%), but deleting the BLM/WRN homolog, SGS1, or the SRS2 helicase increases crossovers 2- to 3-fold. Overexpressing SRS2 nearly eliminates crossovers, whereas overexpression of RAD51 in srs2Delta cells almost completely eliminates the noncrossover recombination pathway. We suggest Sgs1 and its associated topoisomerase Top3 remove double Holliday junction intermediates from a crossover-producing repair pathway, thereby reducing crossovers. Srs2 promotes the noncrossover synthesis-dependent strand-annealing (SDSA) pathway, apparently by regulating Rad51 binding during strand exchange.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroduplex DNA Position Defines the Roles of the Sgs1, Srs2, and Mph1 Helicases in Promoting Distinct Recombination Outcomes

The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions...

متن کامل

Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage.

In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes....

متن کامل

Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast.

Homologous recombination between dispersed repeated sequences is important in shaping eukaryotic genome structure, and such ectopic interactions are affected by repeat size and sequence identity. A transformation-based, gap-repair assay was used to examine the effect of 2% sequence divergence on the efficiency of mitotic double-strand break repair templated by chromosomal sequences in yeast. Be...

متن کامل

An essential DNA strand-exchange activity is conserved in the divergent N-termini of BLM orthologs.

The gene mutated in Bloom's syndrome, BLM, encodes a member of the RecQ family of DNA helicases that is needed to suppress genome instability and cancer predisposition. BLM is highly conserved and all BLM orthologs, including budding yeast Sgs1, have a large N-terminus that binds Top3-Rmi1 but has no known catalytic activity. In this study, we describe a sub-domain of the Sgs1 N-terminus that s...

متن کامل

Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease.

The RecQ DNA helicases, human BLM and yeast Sgs1, form a complex with topoisomerase III (Top3) and are thought to act during DNA replication to restart forks that have paused due to DNA damage or topological stress. We have shown previously that yeast cells lacking SGS1 or TOP3 require MMS4 and MUS81 for viability. Here we show that Mms4 and Mus81 form a heterodimeric structure-specific endonuc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2003